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Abstract

We will prove the formula that allows to solve a polynomial equation of degree 2
as well as the canonical form of a function of the second degree and some rules of sum
and products on the roots.
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1 Canonical form
Theorem 1.1

Any second-degree trinomial of developed form P (x) = ax2 + bx + c, (b, c) ∈ R2 and
a ∈ R/{0}, ∀x ∈ R is uniquely written in the form :

P (x) = a(x − α)2 + β with α =
−b

2a
and β = P (α) = −

b2 − 4ac

4a

Proof 1.1

(b, c) ∈ R2 and a ∈ R/{0}, ∀x ∈ R :

P (x) = ax2 + bx + c

= a(x2 +
b

a
x) + c

= a((x +
b

2a
)

2

− (
b

2a
)

2

) + c

= a(x +
b

2a
)

2

− a × (
b

2a
)

2

+ c

= a(x +
b

2a
)

2

−
ab2

4a2
+ c

= a(x +
b

2a
)

2

−
b2

4a
+ c

= a(x +
b

2a
)

2

−
b2 − 4ac

4a

= a(x − (−
b

2a
))

2

+ (−
b2 − 4ac

4a
)

= a (x − α)
2
+ β with α = −

b

2a
and β = P (α) = −

b2 − 4ac

4a

▲
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2 Solving second-degree equations

Theorem 2.1

Let P be a trinomial of the second degree defined on R by P (x) = ax2+bx+c, (b, c) ∈ R2

and a ∈ R/{0}. The discriminant of the polynomial P is called the real ∆ = b2 − 4ac.

▶ If ∆ > 0, polynomial P has two distinct roots x1 =
−b−√∆

2a and x2 =
−b+√∆

2a .

▶ If ∆ = 0, polynomial P has single root x = −b
2a

▶ If ∆ < 0, polynomial P has no real roots.

But the trinomial az2 + bz + c with (b, c) ∈ R2 and a ∈ R/{0} has two complex roots
combined z1 =

−b−i√∆
2a and z2 =

−b+i√∆
2a when ∆ < 0.

Proof 2.1

We start from the canonical form shown above. We’re going to solve P (x) = 0, where
P (x) = ax2 + bx + c, (b, c) ∈ R2 and a ∈ R/{0}. Let x ∈ R :

P (x) = 0

⇔ ax2 + bx + c = 0

⇔ a(x +
b

2a
)

2

−
b2 − 4ac

4a
= 0 (by the canonical form)

⇔ a(x +
b

2a
)

2

=
b2 − 4ac

4a

⇔ (x +
b

2a
)

2

=
b2 − 4ac

4a2
(as a ≠ 0)

Here, there are two possibilities: either b2 − 4ac is positive or zero, or it is negative.
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If b2 − 4ac > 0:

(x +
b

2a
)

2

=
b2 − 4ac

4a2

⇔ x +
b

2a
= ±

√
b2 − 4ac

4a2

⇔ x +
b

2a
=
±
√
b2 − 4ac
√

4a2

⇔ x +
b

2a
=
±
√
b2 − 4ac

2a

⇔ x =
±
√
b2 − 4ac

2a
−
b

2a

⇔ x =
−b ±

√
b2 − 4ac

2a

If we let ∆ = b2 − 4ac, we get :

⇔ x =
−b ±

√
∆

2a

If b2 − 4ac < 0:

(x +
b

2a
)

2

=
b2 − 4ac

4a2

⇔ (x +
b

2a
)

2

= i2
−(b2 − 4ac)

4a2
(as i2 = −1 )

⇔ x +
b

2a
= ±i

√
−∆

4a2
(as

−∆

4a2
≥ 0 )

⇔ x =
±i

√
−∆

2a
−
b

2a

⇔ x =
−b ± i

√
−∆

2a

If we resume, if ∆ > 0, we get two distincts roots x1 =
−b−√∆

2a and x2 =
−b+√∆

2a .
If ∆ = 0, we get x1 =

−b−√0
2a and x2 =

−b+√0
2a ⇔ x1 = x2 =

−b
2a .

If ∆ < 0, we get two complex roots : z1 =
−b−i√∆

2a and z2 =
−b+i√∆

2a when ∆ < 0 ▲
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2.1 General formula

Lemma 2.1

If Z = a + ib ∈ C∗, then the equation z2 = Z admits two opposite solutions in C.

Proof 2.2

Let’s find out if there is z = x + iy such as z2 = Z. We’ve got the equivalencies:

((x + iy)2 = a + ib)⇐⇒ {
x2 − y2 = a
2xy = b

⇐⇒

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x2 − y2 = a

x2 + y2 =
√
a2 + b2

2xy = b

⇐⇒

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x = ±
√√

a2+b2+a
2

y = ±sign(b)
√√

a2+b2+a
2 ,

with sign(b) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if b > 0
0 if b = 0
−1 if b < 0

The result is then deduced ▲

Theorem 2.2

Let (a, b, c) ∈ C3 (with a ≠ 0) and ∆ = b2 − 4ac ∈ C. Then the equation az2 + bz + c = 0,
noted (E′) in the following, admits two solutions in C, given by :

▶ If ∆ = 0, z1 = z2 = −
b

2a
.

▶ If ∆ ≠ 0, then

z1 =
−b + δ

2a
and z2 =

−b − δ

2a
,

where δ is such that δ2 = ∆.
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Proof 2.3

(E′)⇔ a [(z +
b

2a
)

2

−
∆

2a
] = 0

⇔ a [(z +
b

2a
)

2

− (
δ

2a
)

2

] = 0

⇔ a(z −
−b + δ

2a
)(z −

−b − δ

2a
) = 0.

If ∆ = 0, then δ = 0 and z1 = z2 =
−b
2a . Otherwise, the lemma above ensures that δ such

that δ2 = ∆ exist, and from then on, we’ve got:

z1 =
−b + δ

2a
and z2 =

−b − δ

2a

▲

Remark. This result generalizes the well-known formulas when a, b and c are real. Indeed:

If ∆ > 0, then ∆ = (
√

∆)2 and we can take δ =
√

∆. We therefore get:

x1 =
−b −

√
∆

2a
and x2 =

−b +
√

∆

2a

If ∆ = 0, then ∆ = 02 and we can take δ = 0. We therefore get:

x1 = x2 =
−b

2a

If ∆ < 0, then ∆ = −(−∆) = i2(−∆) = (i2
√

∆) (because −∆ > 0) and we can take δ = i
√
−∆.

We therefore get:

z1 =
−b + i

√
−∆

2a
and z2 =

−b − i
√
−∆

2a
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3 Sum and root products

Theorem 3.1

Let P be a polynomial function defined by P (x) = ax2 + bx+ c, (b, c) ∈ R2 and a ∈ R/{0}
such as ∆ ≥ 0. Equation P (x) = 0 admits two distinct or combined roots x1 and x2 that

verify that :
⎧⎪⎪
⎨
⎪⎪⎩

x1 + x2 = −b
a

x1 × x2 = c
a

Proof 3.1

Let x1 =
−b+√∆

2a and x2 =
−b−√∆

2a and ∆ = b2 − 4ac.

x1 + x2 =
−b +

√
∆

2a
+
−b −

√
∆

2a

=
−2b

2a

=
−b

a

x1 × x2 =
−b +

√
∆

2a
×
−b −

√
∆

2a

=
(−b +

√
∆)(−b −

√
∆)

4a2

=
b2 −∆

4a2

=
b2 − b2 + 4ac

4a2

=
c

a

▲
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