Some demonstrations on the functions of the second degree

Maxime LUCE

April 19, 2020

Abstract

We will prove the formula that allows to solve a polynomial equation of degree 2 as well as the canonical form of a function of the second degree and some rules of sum and products on the roots.

1 Canonical form

Theorem 1.1

Any second-degree trinomial of developed form $P(x) = ax^2 + bx + c$, $(b, c) \in \mathbb{R}^2$ and $a \in \mathbb{R} \setminus \{0\}, \forall x \in \mathbb{R}$ is uniquely written in the form :

$$P(x) = a(x - \alpha)^2 + \beta$$
 with $\alpha = \frac{-b}{2a}$ and $\beta = P(\alpha) = -\frac{b^2 - 4ac}{4a}$

Proof 1.1

 $(b,c) \in \mathbb{R}^2$ and $a \in \mathbb{R} \setminus \{0\}, \ \forall x \in \mathbb{R}$:

$$P(x) = ax^{2} + bx + c$$

$$= a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - a \times \left(\frac{b}{2a}\right)^{2} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{ab^{2}}{4a^{2}} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a}$$

$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^{2} + \left(-\frac{b^{2} - 4ac}{4a}\right)$$

$$= a\left(x - \alpha\right)^{2} + \beta \text{ with } \alpha = -\frac{b}{2a} \text{ and } \beta = P(\alpha) = -\frac{b^{2} - 4ac}{4a}$$

2 Solving second-degree equations

Theorem 2.1

Let P be a trinomial of the second degree defined on \mathbb{R} by $P(x) = ax^2 + bx + c$, $(b, c) \in \mathbb{R}^2$ and $a \in \mathbb{R} \setminus \{0\}$. The discriminant of the polynomial P is called the real $\Delta = b^2 - 4ac$.

- If $\Delta > 0$, polynomial P has two distinct roots $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ and $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.
- ▶ If $\Delta = 0$, polynomial P has single root $x = \frac{-b}{2a}$
- If $\Delta < 0$, polynomial P has no real roots.

But the trinomial $az^2 + bz + c$ with $(b, c) \in \mathbb{R}^2$ and $a \in \mathbb{R} \setminus \{0\}$ has two complex roots combined $z_1 = \frac{-b - i\sqrt{\Delta}}{2a}$ and $z_2 = \frac{-b + i\sqrt{\Delta}}{2a}$ when $\Delta < 0$.

Proof 2.1

We start from the canonical form shown above. We're going to solve P(x) = 0, where $P(x) = ax^2 + bx + c$, $(b, c) \in \mathbb{R}^2$ and $a \in \mathbb{R} \setminus \{0\}$. Let $x \in \mathbb{R}$:

$$P(x) = 0$$

$$\Leftrightarrow ax^{2} + bx + c = 0$$

$$\Leftrightarrow a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a} = 0 \qquad \text{(by the canonical form)}$$

$$\Leftrightarrow a\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a}$$

$$\Leftrightarrow \left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}} \qquad \text{(as } a \neq 0\text{)}$$

Here, there are two possibilities: either $b^2 - 4ac$ is positive or zero, or it is negative.

If $b^2 - 4ac > 0$:

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

$$\Leftrightarrow x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$$

$$\Leftrightarrow x + \frac{b}{2a} = \frac{\pm \sqrt{b^2 - 4ac}}{\sqrt{4a^2}}$$

$$\Leftrightarrow x + \frac{b}{2a} = \frac{\pm \sqrt{b^2 - 4ac}}{2a}$$

$$\Leftrightarrow x = \frac{\pm \sqrt{b^2 - 4ac}}{2a} - \frac{b}{2a}$$

$$\Leftrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If we let $\Delta = b^2 - 4ac$, we get :

$$\Leftrightarrow x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

If $b^2 - 4ac < 0$:

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

$$\Leftrightarrow \left(x + \frac{b}{2a}\right)^2 = i^2 \frac{-(b^2 - 4ac)}{4a^2} \qquad (\text{as } i^2 = -1)$$

$$\Leftrightarrow x + \frac{b}{2a} = \pm i \sqrt{\frac{-\Delta}{4a^2}} \qquad (\text{as } \frac{-\Delta}{4a^2} \ge 0)$$

$$\Leftrightarrow x = \frac{\pm i \sqrt{-\Delta}}{2a} - \frac{b}{2a}$$

$$\Leftrightarrow x = \frac{-b \pm i \sqrt{-\Delta}}{2a}$$

If we resume, if $\Delta > 0$, we get two distincts roots $x_1 = \frac{-b-\sqrt{\Delta}}{2a}$ and $x_2 = \frac{-b+\sqrt{\Delta}}{2a}$. If $\Delta = 0$, we get $x_1 = \frac{-b-\sqrt{0}}{2a}$ and $x_2 = \frac{-b+\sqrt{0}}{2a} \Leftrightarrow x_1 = x_2 = \frac{-b}{2a}$. If $\Delta < 0$, we get two complex roots : $z_1 = \frac{-b-i\sqrt{\Delta}}{2a}$ and $z_2 = \frac{-b+i\sqrt{\Delta}}{2a}$ when $\Delta < 0$

2.1 General formula

Lemma 2.1

If $Z = a + ib \in \mathbb{C}^*$, then the equation $z^2 = Z$ admits two opposite solutions in \mathbb{C} .

Proof 2.2

Let's find out if there is z = x + iy such as $z^2 = Z$. We've got the equivalencies:

$$((x+iy)^2 = a+ib) \iff \begin{cases} x^2 - y^2 = a\\ 2xy = b \end{cases}$$

$$\iff \begin{cases} x^2 - y^2 = a\\ x^2 + y^2 = \sqrt{a^2 + b^2}\\ 2xy = b \end{cases}$$

$$\iff \begin{cases} x = \pm \sqrt{\frac{\sqrt{a^2 + b^2 + a}}{2}}\\ y = \pm sign(b)\sqrt{\frac{\sqrt{a^2 + b^2 + a}}{2}}\end{cases}$$

$$1 \quad \text{if } b > 0$$

with
$$sign(b) = \begin{cases} 1 & \text{if } b > 0 \\ 0 & \text{if } b = 0 \\ -1 & \text{if } b < 0 \end{cases}$$

The result is then deduced

Theorem 2.2

Let $(a, b, c) \in \mathbb{C}^3$ (with $a \neq 0$) and $\Delta = b^2 - 4ac \in \mathbb{C}$. Then the equation $az^2 + bz + c = 0$, noted (E') in the following, admits two solutions in \mathbb{C} , given by :

• If
$$\Delta = 0$$
, $z_1 = z_2 = -\frac{b}{2a}$.

▶ If $\Delta \neq 0$, then

$$z_1 = \frac{-b+\delta}{2a}$$
 and $z_2 = \frac{-b-\delta}{2a}$,

where δ is such that $\delta^2 = \Delta$.

▲

Proof 2.3

$$(E') \Leftrightarrow a \left[\left(z + \frac{b}{2a} \right)^2 - \frac{\Delta}{2a} \right] = 0$$
$$\Leftrightarrow a \left[\left(z + \frac{b}{2a} \right)^2 - \left(\frac{\delta}{2a} \right)^2 \right] = 0$$
$$\Leftrightarrow a \left(z - \frac{-b + \delta}{2a} \right) \left(z - \frac{-b - \delta}{2a} \right) = 0.$$

If $\Delta = 0$, then $\delta = 0$ and $z_1 = z_2 = \frac{-b}{2a}$. Otherwise, the lemma above ensures that δ such that $\delta^2 = \Delta$ exist, and from then on, we've got:

$$z_1 = \frac{-b+\delta}{2a}$$
 and $z_2 = \frac{-b-\delta}{2a}$

Remark. This result generalizes the well-known formulas when a, b and c are real. Indeed: If $\Delta > 0$, then $\Delta = (\sqrt{\Delta})^2$ and we can take $\delta = \sqrt{\Delta}$. We therefore get:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 and $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

If $\Delta = 0$, then $\Delta = 0^2$ and we can take $\delta = 0$. We therefore get:

$$x_1 = x_2 = \frac{-b}{2a}$$

If $\Delta < 0$, then $\Delta = -(-\Delta) = i^2(-\Delta) = (i^2\sqrt{\Delta})$ (because $-\Delta > 0$) and we can take $\delta = i\sqrt{-\Delta}$. We therefore get:

$$z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 and $z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$

3 Sum and root products

Theorem 3.1

Let P be a polynomial function defined by $P(x) = ax^2 + bx + c$, $(b, c) \in \mathbb{R}^2$ and $a \in \mathbb{R} \setminus \{0\}$ such as $\Delta \ge 0$. Equation P(x) = 0 admits two distinct or combined roots x_1 and x_2 that verify that : $\begin{cases} x_1 + x_2 &= \frac{-b}{a} \\ x_1 \times x_2 &= \frac{c}{a} \end{cases}$

Proof 3.1

Let
$$x_1 = \frac{-b+\sqrt{\Delta}}{2a}$$
 and $x_2 = \frac{-b-\sqrt{\Delta}}{2a}$ and $\Delta = b^2 - 4ac$.

$$x_1 + x_2 = \frac{-b+\sqrt{\Delta}}{2a} + \frac{-b-\sqrt{\Delta}}{2a}$$

$$= \frac{-2b}{2a}$$

$$= \frac{-b}{a}$$

$$x_1 \times x_2 = \frac{-b+\sqrt{\Delta}}{2a} \times \frac{-b-\sqrt{\Delta}}{2a}$$

$$= \frac{(-b+\sqrt{\Delta})(-b-\sqrt{\Delta})}{4a^2}$$

$$= \frac{b^2 - \Delta}{4a^2}$$

$$= \frac{b^2 - b^2 + 4ac}{4a^2}$$

$$= \frac{c}{a}$$

References

- [1] N. Nguyen, E. Schneider and S. Daniel, Prépas Sciences, Spécialité Maths, (2019).
- [2] N. Nguyen, E. Schneider and S. Daniel, Prépas Sciences, Maths, (2017).
- [3] Online CAPEC Course