Some demonstrations on the functions of the second degree

Maxime LUCE

April 19, 2020

Abstract

We will prove the formula that allows to solve a polynomial equation of degree 2 as well as the canonical form of a function of the second degree and some rules of sum and products on the roots.

1 Canonical form

Theorem 1.1

Any second-degree trinomial of developed form $P(x)=a x^{2}+b x+c,(b, c) \in \mathbb{R}^{2}$ and $a \in \mathbb{R} \backslash\{0\}, \forall x \in \mathbb{R}$ is uniquely written in the form :

$$
P(x)=a(x-\alpha)^{2}+\beta \text { with } \alpha=\frac{-b}{2 a} \text { and } \beta=P(\alpha)=-\frac{b^{2}-4 a c}{4 a}
$$

Proof 1.1

$(b, c) \in \mathbb{R}^{2}$ and $a \in \mathbb{R} \backslash\{0\}, \forall x \in \mathbb{R}:$

$$
\begin{aligned}
P(x) & =a x^{2}+b x+c \\
& =a\left(x^{2}+\frac{b}{a} x\right)+c \\
& =a\left(\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right)+c \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-a \times\left(\frac{b}{2 a}\right)^{2}+c \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{a b^{2}}{4 a^{2}}+c \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a} \\
& =a\left(x-\left(-\frac{b}{2 a}\right)\right)^{2}+\left(-\frac{b^{2}-4 a c}{4 a}\right) \\
& =a(x-\alpha)^{2}+\beta \text { with } \alpha=-\frac{b}{2 a} \text { and } \beta=P(\alpha)=-\frac{b^{2}-4 a c}{4 a}
\end{aligned}
$$

2 Solving second-degree equations

Theorem 2.1

Let P be a trinomial of the second degree defined on \mathbb{R} by $P(x)=a x^{2}+b x+c,(b, c) \in \mathbb{R}^{2}$ and $a \in \mathbb{R} \backslash\{0\}$. The discriminant of the polynomial P is called the real $\Delta=b^{2}-4 a c$.

- If $\Delta>0$, polynomial P has two distinct roots $x_{1}=\frac{-b-\sqrt{\Delta}}{2 a}$ and $x_{2}=\frac{-b+\sqrt{\Delta}}{2 a}$.
- If $\Delta=0$, polynomial P has single root $x=\frac{-b}{2 a}$
- If $\Delta<0$, polynomial P has no real roots.

But the trinomial $a z^{2}+b z+c$ with $(b, c) \in \mathbb{R}^{2}$ and $a \in \mathbb{R} \backslash\{0\}$ has two complex roots combined $z_{1}=\frac{-b-i \sqrt{\Delta}}{2 a}$ and $z_{2}=\frac{-b+i \sqrt{\Delta}}{2 a}$ when $\Delta<0$.

Proof 2.1

We start from the canonical form shown above. We're going to solve $P(x)=0$, where $P(x)=a x^{2}+b x+c,(b, c) \in \mathbb{R}^{2}$ and $a \in \mathbb{R} \backslash\{0\}$. Let $x \in \mathbb{R}$:

$$
\begin{aligned}
P(x) & =0 \\
\Leftrightarrow a x^{2}+b x+c & =0 \\
\Leftrightarrow a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a} & =0 \quad \text { (by the canonical form) } \\
\Leftrightarrow a\left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}-4 a c}{4 a} \\
\Leftrightarrow\left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}-4 a c}{4 a^{2}} \quad(\text { as } a \neq 0)
\end{aligned}
$$

Here, there are two possibilities: either $b^{2}-4 a c$ is positive or zero, or it is negative.

If $b^{2}-4 a c>0$:

$$
\begin{aligned}
\left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}-4 a c}{4 a^{2}} \\
\Leftrightarrow x+\frac{b}{2 a} & = \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
\Leftrightarrow x+\frac{b}{2 a} & =\frac{ \pm \sqrt{b^{2}-4 a c}}{\sqrt{4 a^{2}}} \\
\Leftrightarrow x+\frac{b}{2 a} & =\frac{ \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\Leftrightarrow x & =\frac{ \pm \sqrt{b^{2}-4 a c}}{2 a}-\frac{b}{2 a} \\
\Leftrightarrow x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

If we let $\Delta=b^{2}-4 a c$, we get :

$$
\Leftrightarrow x=\frac{-b \pm \sqrt{\Delta}}{2 a}
$$

If $b^{2}-4 a c<0$:

$$
\begin{aligned}
\left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}-4 a c}{4 a^{2}} \\
\Leftrightarrow\left(x+\frac{b}{2 a}\right)^{2} & =i^{2} \frac{\left(b^{2}-4 a c\right)}{4 a^{2}} \quad\left(\text { as } i^{2}=-1\right) \\
\Leftrightarrow x+\frac{b}{2 a} & = \pm i \sqrt{\frac{-\Delta}{4 a^{2}}} \quad\left(\text { as } \frac{-\Delta}{4 a^{2}} \geq 0\right) \\
\Leftrightarrow x & =\frac{ \pm i \sqrt{-\Delta}}{2 a}-\frac{b}{2 a} \\
\Leftrightarrow x & =\frac{-b \pm i \sqrt{-\Delta}}{2 a}
\end{aligned}
$$

If we resume, if $\Delta>0$, we get two distincts roots $x_{1}=\frac{-b-\sqrt{\Delta}}{2 a}$ and $x_{2}=\frac{-b+\sqrt{\Delta}}{2 a}$. If $\Delta=0$, we get $x_{1}=\frac{-b-\sqrt{0}}{2 a}$ and $x_{2}=\frac{-b+\sqrt{0}}{2 a} \Leftrightarrow x_{1}=x_{2}=\frac{-b}{2 a}$. If $\Delta<0$, we get two complex roots : $z_{1}=\frac{-b-i \sqrt{\Delta}}{2 a}$ and $z_{2}=\frac{-b+i \sqrt{\Delta}}{2 a}$ when $\Delta<0$

2.1 General formula

Lemma 2.1

If $Z=a+i b \in \mathbb{C}^{*}$, then the equation $z^{2}=Z$ admits two opposite solutions in \mathbb{C}.

Proof 2.2

Let's find out if there is $z=x+i y$ such as $z^{2}=Z$. We've got the equivalencies:

$$
\begin{aligned}
\left((x+i y)^{2}=a+i b\right) & \Longleftrightarrow\left\{\begin{array}{l}
x^{2}-y^{2}=a \\
2 x y=b
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
x^{2}-y^{2}=a \\
x^{2}+y^{2}=\sqrt{a^{2}+b^{2}} \\
2 x y=b
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
x= \pm \sqrt{\frac{\sqrt{a^{2}+b^{2}+a}}{2}} \\
y= \pm \operatorname{sign}(b) \sqrt{\frac{\sqrt{a^{2}+b^{2}}+a}{2}}
\end{array}\right.
\end{aligned}
$$

with $\operatorname{sign}(b)=\left\{\begin{aligned} 1 & \text { if } b>0 \\ 0 & \text { if } b=0 \\ -1 & \text { if } b<0\end{aligned}\right.$
The result is then deduced

Theorem 2.2

Let $(a, b, c) \in \mathbb{C}^{3}$ (with $a \neq 0$) and $\Delta=b^{2}-4 a c \in \mathbb{C}$. Then the equation $a z^{2}+b z+c=0$, noted $\left(E^{\prime}\right)$ in the following, admits two solutions in \mathbb{C}, given by :

- If $\Delta=0, z_{1}=z_{2}=-\frac{b}{2 a}$.
- If $\Delta \neq 0$, then

$$
z_{1}=\frac{-b+\delta}{2 a} \quad \text { and } \quad z_{2}=\frac{-b-\delta}{2 a}
$$

where δ is such that $\delta^{2}=\Delta$.

Proof 2.3

$$
\begin{aligned}
\left(E^{\prime}\right) & \Leftrightarrow a\left[\left(z+\frac{b}{2 a}\right)^{2}-\frac{\Delta}{2 a}\right]=0 \\
& \Leftrightarrow a\left[\left(z+\frac{b}{2 a}\right)^{2}-\left(\frac{\delta}{2 a}\right)^{2}\right]=0 \\
& \Leftrightarrow a\left(z-\frac{-b+\delta}{2 a}\right)\left(z-\frac{-b-\delta}{2 a}\right)=0
\end{aligned}
$$

If $\Delta=0$, then $\delta=0$ and $z_{1}=z_{2}=\frac{-b}{2 a}$. Otherwise, the lemma above ensures that δ such that $\delta^{2}=\Delta$ exist, and from then on, we've got:

$$
z_{1}=\frac{-b+\delta}{2 a} \quad \text { and } \quad z_{2}=\frac{-b-\delta}{2 a}
$$

Remark. This result generalizes the well-known formulas when a, b and c are real. Indeed:
If $\Delta>0$, then $\Delta=(\sqrt{\Delta})^{2}$ and we can take $\delta=\sqrt{\Delta}$. We therefore get:

$$
x_{1}=\frac{-b-\sqrt{\Delta}}{2 a} \quad \text { and } \quad x_{2}=\frac{-b+\sqrt{\Delta}}{2 a}
$$

If $\Delta=0$, then $\Delta=0^{2}$ and we can take $\delta=0$. We therefore get:

$$
x_{1}=x_{2}=\frac{-b}{2 a}
$$

If $\Delta<0$, then $\Delta=-(-\Delta)=i^{2}(-\Delta)=\left(i^{2} \sqrt{\Delta}\right)$ (because $\left.-\Delta>0\right)$ and we can take $\delta=i \sqrt{-\Delta}$. We therefore get:

$$
z_{1}=\frac{-b+i \sqrt{-\Delta}}{2 a} \quad \text { and } \quad z_{2}=\frac{-b-i \sqrt{-\Delta}}{2 a}
$$

3 Sum and root products

Theorem 3.1

Let P be a polynomial function defined by $P(x)=a x^{2}+b x+c,(b, c) \in \mathbb{R}^{2}$ and $a \in \mathbb{R} \backslash\{0\}$ such as $\Delta \geq 0$. Equation $P(x)=0$ admits two distinct or combined roots x_{1} and x_{2} that verify that: $\left\{\begin{array}{l}x_{1}+x_{2}=\frac{-b}{a} \\ x_{1} \times x_{2}=\frac{c}{a}\end{array}\right.$

Proof 3.1

Let $x_{1}=\frac{-b+\sqrt{\Delta}}{2 a}$ and $x_{2}=\frac{-b-\sqrt{\Delta}}{2 a}$ and $\Delta=b^{2}-4 a c$.

$$
\begin{aligned}
x_{1}+x_{2} & =\frac{-b+\sqrt{\Delta}}{2 a}+\frac{-b-\sqrt{\Delta}}{2 a} \\
& =\frac{-2 b}{2 a} \\
& =\frac{-b}{a}
\end{aligned}
$$

$$
x_{1} \times x_{2}=\frac{-b+\sqrt{\Delta}}{2 a} \times \frac{-b-\sqrt{\Delta}}{2 a}
$$

$$
=\frac{(-b+\sqrt{\Delta})(-b-\sqrt{\Delta})}{4 a^{2}}
$$

$$
=\frac{b^{2}-\Delta}{4 a^{2}}
$$

$$
=\frac{b^{2}-b^{2}+4 a c}{4 a^{2}}
$$

$$
=\frac{c}{a}
$$

References

[1] N. Nguyen, E. Schneider and S. Daniel, Prépas Sciences, Spécialité Maths, (2019).
[2] N. Nguyen, E. Schneider and S. Daniel, Prépas Sciences, Maths, (2017).
[3] Online CAPEC Course

