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Abstract

We will prove the formula that allows to solve a polynomial equation of degree 2
as well as the canonical form of a function of the second degree and some rules of sum
and products on the roots.
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1 Canonical form

Theorem 1.1

Any second-degree trinomial of developed form P(z) = axz? + bz + ¢, (b,c) € R? and
a € R\{0}, Yx € R is uniquely written in the form :

_ 2_4
P(x):a($—a)2+ﬁwitha=—bandﬁ:P(a)z_b ac
2a 4a
Proof 1.1
(b,c) e R? and a e R\{0}, Vx e R :
P(z) =az® +bx +c
—a(x2+—x)+c
a
b\2 [ b)\>
:a((ajﬁ'%) —(%))4-0
b \? b\2
=a($+—) —(LX(—) +c
2a 2a
—a(a;+£)2—a_b2+
- 2a)  4a?
b\ b2
ZCL(ZE+—) ——+cC
2a 4a
( 6)2 b? — dac
=alz+—1] -
2a 4a
(o= () + (55)
=alz-|-— +[ =
2a 4a
24
:a(x_a)2+/6witha=_£and/B:P(a):_b ac
2a 4a
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2 Solving second-degree equations

Theorem 2.1

Let P be a trinomial of the second degree defined on R by P(x) = az?+bx+c, (b,c) € R?
and a € R\{0}. The discriminant of the polynomial P is called the real A = b% - 4ac.

-b—VA

2a

—b+VA
2a

» If A >0, polynomial P has two distinct roots x; = and xy =

» If A =0, polynomial P has single root x = g—b

» If A <0, polynomial P has no real roots.

But the trinomial az? + bz + ¢ with (b,c) € R? and a € R\{0} has two complex roots

combined z; = _b_;g/z and zy = % when A < 0.

Proof 2.1

We start from the canonical form shown above. We're going to solve P(z) = 0, where
P(x)=ax?+bx+c, (b,c) eR? and a e R\{0}. Let x e R :

P(xz)=0
< ar’+br+c=0
b\* -4
c»a(x+—) - oo (by the canonical form)
2a 4a
- ( . b)2 b? — dac
alr+—| =
2a 4a
b\ -4
@(:1:+%) :Tzac (as a #0)

Here, there are two possibilities: either % — 4ac is positive or zero, or it is negative.
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If b2 —4ac > 0:

(x+£)2_62—4ac
2a)  4a2
<:>x+£—i b? - dac
2a 4a?
- b Vb2 -4dac
€T+ — =
2a Vaa?
b Vb2 -4dac
S r+—=
2a 2a
+Vb2—4dac b
< x= - —
2a 2a
b+ Vb -4ac
<> T =
2a
If we let A = 0% - 4ac, we get :
“b+VA
>r=———
2a
If b2 — 4ac < 0:
(m+£)2_b2—4ac
2a)  4a2
b\°> ,—(b%-4ac) 9
Q(QH-%) =1 1 (as ¥ =-1)
b -A -A
S rt o=\ (as4—a220)
+ivV-A b
T = -—
2a 2a
-b+iv-A
<=
2a

If we resume, if A >0, we get two distincts roots z; = % and g =
If A=0, we get xlz%a\/a andx@z%ﬁ

<~ le = Qj2 = =b
If A <0, we get two complex roots : z; = % and zp = % when A <0

%.

—b+VA
2a
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2.1 General formula

Lemma 2.1

If Z=a+1ibeC*, then the equation 22 = Z admits two opposite solutions in C.

Proof 2.2

Let’s find out if there is z = x + iy such as 22 = Z. We’ve got the equivalencies:

((a:+@'y)2:a+ib)<=>{ Toyt=a

2zy =b
22 -y2=q
=1 ?2+y?=Va*+?
2zy =b
T=4 \/a2-;b2+a
<
y = xsign(b)\/ LR
1 ifb6>0
with sign(b) =< 0 ifb=0
-1 iftb<0
The result is then deduced A

Theorem 2.2

Let (a,b,c) € C3 (with a # 0) and A =0? —4ac € C. Then the equation az? + bz + ¢ = 0,
noted (E’) in the following, admits two solutions in C, given by :

» If A=0, 21222=—£.
2a
» If A+0, then
_—b+0 -b-¢

21 = and 29 =
2a 2a '

where § is such that 02 = A.
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Proof 2.3

(E') < a

[z+ ]20
©a|: Z+ — 2@)]:0
o 20

If A=0, then § =0 and 2y = z5 = %‘L Otherwise, the lemma above ensures that ¢ such
that 62 = A exist, and from then on, we’ve got:

-b+6 -b-90
and 29 =
2a 2a

1 =

A

Remark. This result generalizes the well-known formulas when a, b and ¢ are real. Indeed:
If A >0, then A = (v/A)? and we can take § = v/A. We therefore get:
-b-VA -b+VA

n=—p, - ad o m=—

If A=0, then A =0? and we can take 6 =0. We therefore get:
-b

1'1—.1'2—2@

If A <0, then A = —(-A) =i2(-A) = (2v/A) (because ~A > 0) and we can take § = iv/=A.

We therefore get:
b+ ivA b- iR
7H=— and Zg= ———————
2a 2a
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3 Sum and root products

Theorem 3.1

Let P be a polynomial function defined by P(x) = ax?+ bz + ¢, (b,c) € R? and a € R\{0}

such as A > 0. Equation P(x) =0 admits two distinct or combined roots xz; and x5 that

+ = b

verify that : T N
T1 XXy = a

Proof 3.1

Let z; = ELISV/N| Ty = “—VA and A = b2 - 4ac.

2a 2a

“b+vVA -b-VA
1+ Xy = +
2a 2a
-2
"~ 2a
_ b
a
“b+vVA -b-VA
T1 XTo = X
2a 2a
_ (b VA)(b-VA)
4a?
_b2—A
4a?
_b2—b2+4ac
- 42
"4
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