Some demonstrations on the sequels

Maxime Luce

2020/03/30

Abstract

We will prove the explicit forms of the geometrical and arithmetical sequences and prove the formulas of the sums n first squares and cubes.

1 Geometric and arithmetic sequences

1.1 Arithmetic

Definition 1.1

 $\mathbb{R}^{\mathbb{N}}$ designates the function space : $\mathbb{N} \longrightarrow \mathbb{R}$. They will be called real (values) sequences.

Definition 1.2

Let $(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$. $(u_n)_{n \in \mathbb{N}}$ is an arithmetic sequence if and only if

 $\exists r \in \mathbb{R}, \forall n \in \mathbb{N}, u_{n+1} = u_n + r$

Definition 1.3

 $\mathbb{R}^{\mathbb{N}}_{a}$ refers to the set of arithmetic sequences.

$$\mathbb{R}^{\mathbb{N}}_{a} = \{(u_{n})_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} | \exists r \in \mathbb{R}, \forall n \in \mathbb{N}, u_{n+1} = u_{n} + r\}$$

Theorem 1.1: Explicit form of arithmetic sequences

$$(u_n)_{n \in \mathbb{N}} \in \mathbb{R}_a^{\mathbb{N}} \Leftrightarrow \exists r \in \mathbb{R}, \forall n \in \mathbb{N}, u_n = u_0 + nr$$

Proof 1.1

Proposition 1.1.1. The sequence (u_n) is an arithmetic sequence of first term u0 and reason r.

Proof. Let $(u_n)_{n \in \mathbb{N}} | u_n = u_0 + nr$

We have : $u_{n+1} - u_n = u_0 + (n+1)r - (u_0 + nr) = u_0 + nr + r - u_0 - nr = r$

The sequence (u_n) is thus an arithmetic sequence of first term u_0 and reason r.

Proposition 1.1.2. The sequence (u_n) can be described as $u_n = u_0 + nr$.

Proof. Let (u_n) an arithmetic sequence of reason r and first term u_0 .

$$u_1 = u_0 + r \tag{1}$$

$$u_2 = u_1 + r \tag{2}$$

$$\dots = \dots$$
 (3)

$$u_{n-1} = u_{n-2} + r \tag{4}$$

$$u_n = u_{n-1} + r \tag{5}$$

By adding member to member all these equalities, we obtain :

$$u_1 + u_2 + \dots + u_{n-1} + u_n = u_0 + u_1 + \dots + u_{n-1} + nr$$
(6)

 $u_n = u_0 + u_1 - u_1 + u_2 - u_2 + \dots + u_{n-1} - u_{n-1} + nr$ (7)

$$u_n = u_0 + nr \tag{8}$$

Proof Theorem. We can see that Proposition 1.1.1. \Rightarrow Proposition 1.1.2. and Proposition 1.1.2. \Rightarrow Proposition 1.1.1. It means that Proposition 1.1.1. \Leftrightarrow Proposition 1.1.2.

This proves that only the writing $u_n = u_0 + nr$ is an arithmetic sequence of reason r and first term u_0 .

1.2 Geo

Definition 2.4

 $\mathbb{R}^{\mathbb{N}}$ designates the function space : $\mathbb{N} \longrightarrow \mathbb{R}$. They will be called real (values) sequences.

Definition 2.5

Let $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$. $(u_n)_{n\in\mathbb{N}}$ is an geometric sequence if and only if

 $\exists q \in \mathbb{R}, \forall n \in \mathbb{N}, u_{n+1} = u_n \times q$

Definition 2.6

 $\mathbb{R}_q^{\mathbb{N}}$ refers to the set of geometric sequences.

$$\mathbb{R}_{q}^{\mathbb{N}} = \{(u_{n})_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} | \exists q \in \mathbb{R}, \forall n \in \mathbb{N}, u_{n+1} = u_{n} \times q\}$$

Theorem 2.2: Explicit form of geometric sequences

$$(u_n)_{n \in \mathbb{N}} \in \mathbb{R}_q^{\mathbb{N}} \Leftrightarrow \exists q \in \mathbb{R}, \forall n \in \mathbb{N}, u_n = u_0 \times q^n$$

Proof 2.2

Proposition 1.2.1. The sequence (u_n) is an geometric sequence of first term u0 and reason q.

Proof. Let $(u_n)_{n \in \mathbb{N}} | u_n = u_0 \times q^n$

We have : $\frac{u_{n+1}}{u_n} = \frac{u_0 \times q^{n+1}}{u_0 \times q^n} = \frac{u_0 \times q^n \times q}{u_0 \times q^n} = q$

Proposition 1.2.2. The sequence (u_n) can be described as $u_n = u_0 \times q^n$.

Proof. Let (u_n) a geometric sequence of reason q and first term u_0 .

 $u_1 = u_0 q \tag{9}$

$$u_2 = u_1 q \tag{10}$$

$$\dots = \dots$$
 (11)
 $u_{n-1} = u_{n-2}q$ (12)

$$u_n = u_{n-1}q \tag{13}$$

 By multiplying member to member all these equalities, we obtain :

$$u_1 \times u_2 \times \dots \times u_{n-1} \times u_n = u_0 \times u_1 \times \dots \times u_{n-1} \times q^n \tag{14}$$

$$u_n = u_0 \times \frac{u_1 \times \dots \times u_{n-1}}{u_1 \times \dots \times u_{n-1}} \times q^n \tag{15}$$

$$u_n = u_0 q^n \tag{16}$$

Proof Theorem. We can see that Proposition 1.2.1. \Rightarrow Proposition 1.2.2. and Proposition 1.2.2. \Rightarrow Proposition 1.2.1. It means that Proposition 1.2.1. \Leftrightarrow Proposition 1.2.2.

This proves that only the writing $u_n = u_0 \times q^n$ is a geometric sequence of reason q and first term u_0 .

2 Some sums

2.1 Early sums

Theorem 1.1		
$\forall n \in \mathbb{N}^*$:	$1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$	
	$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$	

Proof 1.1

 $\forall n \in \mathbb{N}^*$:

Let : $S =$	1	+	2	+	 +	n-2	+	n-1	+	n	(17)
We have also : $S =$	n	+	n-1	+	 +	3	+	2	+	1	(18)

By adding member to member the two ties, we obtain :

$$2S = \underbrace{(n+1) + (n+1) + (n+1) + \dots + (n+1) + (n+1) + (n+1)}_{\checkmark}$$
(19)

$$2S = n(n+1) \tag{20}$$

$$S = \frac{n(n+1)}{2} \tag{21}$$

Remark. This demonstration was discovered by Gauss when, as a child, his mistress asked him to sum the numbers from 1 to 100.

Theorem 1.2

Let q be any real number and n a natural number :

• If $q \neq 1$ then

$$1 + q + q^{2} + \dots + q^{n} = \frac{1 - q^{n+1}}{1 - q}$$
$$\sum_{k=0}^{n} q^{k} = \frac{1 - q^{n+1}}{1 - q}$$

• If q = 1 then

$$1 + q + q^2 + \dots + q^n = n + 1$$

or

or

$$\sum_{k=0}^{n} q^k = n+1$$

Proof 1.2

If $q \neq 1$ then let $S = 1 + q + q^2 + \dots + q^n$. So we have

$$q \times S = q \times (1 + q + q^2 + \dots + q^n)$$
 (22)

$$= q + q^2 + q^3 + \dots + q^{n+1}$$
(23)

Hence :

$$S - q \times S = (1 + q + q^{2} + \dots + q^{n}) - (q + q^{2} + q^{3} + \dots + q^{n+1})$$

$$S - q \times S = 1 + q - q + q^{2} - q^{2} + \dots + q^{n} - q^{n} + q^{n+1}$$
(24)
(25)

$$S - q \times S = 1 + q - q + q^{2} - q^{2} + \dots + q^{n} - q^{n} + q^{n+1}$$

$$S - q \times S = 1 + q^{n+1}$$
(25)
(26)

$$S - q \times S = 1 + q^{n+1}$$

$$S \times (1 - q) = 1 + q^{n+1}$$
(20)
(27)

$$S = \frac{1 - q^{n+1}}{1 - q}$$
(28)

And for q = 1,

$$S = 1 + \underbrace{q + q^2 + \ldots + q^n}_{n} = \underbrace{1 + 1 + 1 + \ldots + 1}_{n+1} = n + 1$$

2.2 Square sums

Theorem 2.3: Sum of the first n squares

 $\forall n \in \mathbb{N}$:

$$1^2 + 2^2 + 3^2 + \ldots + n^2 = \sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$

Proof 2.3

Let :
$$S_1 = 1 + 2 + 3 + \dots + n$$
, $S_2 = 1^2 + 2^2 + 3^2 + \dots + n^2$ and $S_3 = 1^3 + 2^3 + 3^3 + \dots + n^3$. $\forall n \in \mathbb{N} :$
 $(n+1)^3 = (n+1)(n+1)^2 = (n+1)(n^2 + 2n + 1) = n^3 + 3n^2 + 3n + 1$

$$(0+1)^3 = 0^3 + 3 \times 0^2 + 3 \times 0 + 1 \tag{29}$$

 $(1+1)^3 = 1^3 + 3 \times 1^2 + 3 \times 1 + 1 \tag{30}$

$$(2+1)^3 = 2^3 + 3 \times 2^2 + 3 \times 2 + 1 \tag{31}$$

$$\dots = \dots \tag{32}$$

$$(n-2+1)^3 = (n-2)^3 + 3 \times (n-2)^2 + 3 \times (n-2) + 1$$
(33)

$$(n-1+1)^3 = (n-1)^3 + 3 \times (n-1)^2 + 3 \times (n-1) + 1$$
(34)

 $(n+1)^3 = n^3 + 3 \times n^2 + 3 \times n + 1 \tag{35}$

(36)

By adding member to member the two ties, we obtain :

$$S_3 + (n+1)^3 = S_3 + 3S_2 + 3S_1 + (n+1)$$
(37)

$$(n+1)^3 = 3S_2 + 3S_1 + (n+1) \tag{38}$$

$$n^{3} + 3n^{2} + 3n + 1 = 3S_{2} + 3\frac{n(n+1)}{2} + (n+1)$$
(39)

$$2n^{3} + 6n^{2} + 6n + 2 = 6S_{2} + 3n(n+1) + 2(n+1)$$
(40)

$$6n^{2} + 6n + 2 - 3n^{2} - 3n - 2n - 2 = 6S_{2}$$
(41)

$$6S_2 = 2n^3 + 3n^2 + n \tag{42}$$

$$6S_2 = n(2n^2 + 3n + 1)$$

$$6S_2 = n(n + 1)(2n + 1)$$

$$(43)$$

$$0S_2 = n(n+1)(2n+1)$$
(44)
$$n(n+1)(2n+1)$$

$$S_2 = \frac{n(n+1)(2n+1)}{6} \tag{45}$$

Proof 2.4: By Mathematical induction

 $2n^{3} +$

Let's show by recurrence on $n\in\mathbb{N}$ that

$$P_n:"\sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}"$$

<u>Initialization</u>: n = 0

$$\sum_{k=0}^{0} k^2 = \frac{0 \times 1 \times 1}{6} = \frac{0}{6} = 0$$

Let $n \in \mathbb{N}$ such as P_n

$$\sum_{k=0}^{n+1} k^2 = \sum_{k=0}^n k^2 + (n+1)^2$$
(46)

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2 \qquad \text{(by the recurrence hypothesis)}$$
(47)

$$=\frac{n(n+1)(2n+1)+6(n+1)^2}{6}$$
(48)

$$=\frac{n(2n^2+n+2n+1)+6n^2+12n+6}{6}$$
(49)

$$=\frac{2n^3+n^2+2n^2+n+6n^2+12n+6}{6}$$
(50)

$$=\frac{2n^3+9n^2+13n+6}{6}\tag{51}$$

$$=\frac{(n+1)(n+2)(2n+3)}{6}$$
(52)

Hence P_{n+1} So we have $\forall n \in \mathbb{N}$:

$$\sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$

2.3 Cube

Theorem 3.4: Sum of the first n cubes

 $\forall n \in \mathbb{N}$:

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \sum_{k=0}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

Proof 3.5

et $S_1 = 1 + 2 + 3 + \dots + n$, $S_2 = 1^2 + 2^2 + 3^2 + \dots + n^2$, $S_3 = 1^3 + 2^3 + 3^3 + \dots + n^3$ and $S_4 = 1^4 + 2^4 + 3^4 + \dots + n^4$. $\forall n \in \mathbb{N}$: $(n+1)^4 = (n+1)^2(n+1)^2 = (n^2+2n+1)(n^2+2n+1) = n^4+4n^3+6n^2+4n+1$

$$(0+1)^4 = 0^4 + 4 \times 0^3 + 6 \times 0^2 + 4 \times 0 + 1$$
(53)

$$(1+1)^4 = 1^4 + 4 \times 1^3 + 6 \times 1^2 + 4 \times 1 + 1$$
(54)

$$(1+1)^{4} = 1^{4} + 4 \times 1^{3} + 6 \times 1^{2} + 4 \times 1 + 1$$

$$(34)$$

$$(2+1)^{4} = 2^{4} + 4 \times 2^{3} + 6 \times 2^{2} + 4 \times 2 + 1$$

$$(55)$$

$$\begin{array}{c} +1) &= 2 &+ 4 \times 2 &+ 6 \times 2 &+ 4 \times 2 + 1 \\ \dots &= \dots \end{array} \tag{56}$$

$$(n-2+1)^4 = (n-2)^4 + 4(n-2)^3 + 6(n-2)^2 + 4(n-2) + 1$$
(57)

$$(n-1+1)^4 = (n-1)^4 + 4(n-1)^3 + 6(n-1)^2 + 4(n-1) + 1$$
(58)

$$(n+1)^4 = n^4 + 4n^3 + 6n^2 + 4n + 1 \tag{59}$$

By adding member to member the two ties, we obtain :

$$S_4 + (n+1)^4 = S_4 + 4S_3 + 6S_2 + 4S_1 + (n+1)$$
(61)

$$(n+1)^4 = 4S_3 + 6S_2 + 4S_1 + (n+1)$$
(62)

$$(n+1)^4 = 4S_3 + n(n+1)(2n+1) + 4\frac{n(n+1)}{2} + (n+1)$$
 (63)

$$(n+1)^4 - n(n+1)(2n+1) - 2n(n+1) - (n+1) = 4S_3$$

$$(n+1)((n+1)^3 - n(2n+1) - 2n - 1) = 4S_3$$
(64)
(65)

$$u(2n+1) - 2n - 1) = 4S_3 \tag{65}$$

$$4S_3 = (n+1)(n^3 + n^2) \tag{66}$$

$$4S_3 = (n+1)n^2(n+1)^2 \tag{67}$$

$$S_3 = \frac{n^2(n+1)^2}{4} \tag{68}$$

$$S_3 = \left(\frac{n(n+1)^2}{2}\right)^2 = S_1^2 \tag{69}$$

Proof 3.6: By Mathematical induction

Let's show by recurrence on $n \in \mathbb{N}$ that

$$P_n: "\sum_{k=0}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2 "$$

Initialization: n = 0

$$\sum_{k=0}^{0} k^3 = \left(\frac{0 \times 1}{2}\right)^2 = 0$$

Let $n \in \mathbb{N}$ such as P_n

$$\sum_{k=0}^{n+1} k^3 = \sum_{k=0}^n k^3 + (n+1)^3$$
(70)

$$= \left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3 \qquad \text{(by the recurrence hypothesis)}$$
(71)

$$=\frac{n^2(n^2+2n+1)}{4} + (n+1)^3 \tag{72}$$

$$=\frac{n^4+2n^3+n^2+4(n^3+2n^2+n+n^2+2n+1)}{4}$$
(73)

$$=\frac{n^4+2n^3+n^2+4n^3+8n^2+4n+4n^2+8n+4}{4}$$
(74)

$$=\frac{n^4+6n^3+13n^2+12n+4}{4} \tag{75}$$

$$=\left(\frac{(n+1)(n+2)}{2}\right)^{2}$$
(76)

Hence P_{n+1} So we have $\forall n \in \mathbb{N}$:

$$\sum_{k=0}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$