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Abstract

We will prove the explicit forms of the geometrical and arithmetical sequences and prove the formulas of the

sums n �rst squares and cubes.
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1 Geometric and arithmetic sequences

1.1 Arithmetic

De�nition 1.1

RN designates the function space : N −→ R. They will be called real (values) sequences.

De�nition 1.2

Let (un)n∈N ∈ RN. (un)n∈N is an arithmetic sequence if and only if

∃r ∈ R,∀n ∈ N, un+1 = un + r

De�nition 1.3

RN
a refers to the set of arithmetic sequences.

RN
a = {(un)n∈N ∈ RN|∃r ∈ R,∀n ∈ N, un+1 = un + r}

Theorem 1.1: Explicit form of arithmetic sequences

(un)n∈N ∈ RN
a ⇔ ∃r ∈ R,∀n ∈ N, un = u0 + nr

Proof 1.1

Proposition 1.1.1. The sequence (un) is an arithmetic sequence of �rst term u0 and reason r.

Proof. Let (un)n∈N|un = u0 + nr

We have : un+1 − un = u0 + (n+ 1)r − (u0 + nr) = u0 + nr + r − u0 − nr = r

The sequence (un) is thus an arithmetic sequence of �rst term u0 and reason r. �

Proposition 1.1.2. The sequence (un) can be described as un = u0 + nr.

Proof. Let (un) an arithmetic sequence of reason r and �rst term u0.

u1 = u0 + r (1)

u2 = u1 + r (2)

... = ... (3)

un−1 = un−2 + r (4)

un = un−1 + r (5)

By adding member to member all these equalities, we obtain :

u1 + u2 + ...+ un−1 + un = u0 + u1 + ...+ un−1 + nr (6)

un = u0 + u1 − u1 + u2 − u2 + ...+ un−1 − un−1 + nr (7)

un = u0 + nr (8)

�
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Proof Theorem. We can see that Proposition 1.1.1. ⇒ Proposition 1.1.2. and Proposition 1.1.2. ⇒ Proposi-
tion 1.1.1.. It means that Proposition 1.1.1. ⇔ Proposition 1.1.2..

This proves that only the writing un = u0 + nr is an arithmetic sequence of reason r and �rst term u0. �

�

1.2 Geo

De�nition 2.4

RN designates the function space : N −→ R. They will be called real (values) sequences.

De�nition 2.5

Let (un)n∈N ∈ RN. (un)n∈N is an geometric sequence if and only if

∃q ∈ R,∀n ∈ N, un+1 = un × q

De�nition 2.6

RN
g refers to the set of geometric sequences.

RN
g = {(un)n∈N ∈ RN|∃q ∈ R,∀n ∈ N, un+1 = un × q}

Theorem 2.2: Explicit form of geometric sequences

(un)n∈N ∈ RN
g ⇔ ∃q ∈ R,∀n ∈ N, un = u0 × qn

Proof 2.2

Proposition 1.2.1. The sequence (un) is an geometric sequence of �rst term u0 and reason q.

Proof. Let (un)n∈N|un = u0 × qn

We have :
un+1

un
=

u0 × qn+1

u0 × qn
=

u0 × qn × q

u0 × qn
= q �

Proposition 1.2.2. The sequence (un) can be described as un = u0 × qn.

Proof. Let (un) a geometric sequence of reason q and �rst term u0.

u1 = u0q (9)

u2 = u1q (10)

... = ... (11)

un−1 = un−2q (12)

un = un−1q (13)
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By multiplying member to member all these equalities, we obtain :

u1 × u2 × ...× un−1 × un = u0 × u1 × ...× un−1 × qn (14)

un = u0 ×
u1 × ...× un−1

u1 × ...× un−1
× qn (15)

un = u0q
n (16)

�

Proof Theorem. We can see that Proposition 1.2.1. ⇒ Proposition 1.2.2. and Proposition 1.2.2. ⇒ Proposi-
tion 1.2.1.. It means that Proposition 1.2.1. ⇔ Proposition 1.2.2..

This proves that only the writing un = u0 × qn is a geometric sequence of reason q and �rst term u0. �

�
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2 Some sums

2.1 Early sums

Theorem 1.1

∀n ∈ N∗ :
1 + 2 + 3 + ...+ n =

n(n+ 1)

2
n∑

k=1

k =
n(n+ 1)

2

Proof 1.1

∀n ∈ N∗ :

Let : S = 1 + 2 + ... + n− 2 + n− 1 + n (17)

We have also : S = n + n− 1 + ... + 3 + 2 + 1 (18)

By adding member to member the two ties, we obtain :

2S = (n+ 1) + (n+ 1) + (n+ 1) + ...+ (n+ 1) + (n+ 1) + (n+ 1)︸ ︷︷ ︸
n times

(19)

2S = n(n+ 1) (20)

S =
n(n+ 1)

2
(21)

�

Remark. This demonstration was discovered by Gauss when, as a child, his mistress asked him to sum the numbers
from 1 to 100.

Theorem 1.2

Let q be any real number and n a natural number :

� If q 6= 1 then

1 + q + q2 + ...+ qn =
1− qn+1

1− q

or
n∑

k=0

qk =
1− qn+1

1− q

� If q = 1 then
1 + q + q2 + ...+ qn = n+ 1

or
n∑

k=0

qk = n+ 1
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Proof 1.2

If q 6= 1 then let S = 1 + q + q2 + ...+ qn. So we have

q × S = q × (1 + q + q2 + ...+ qn) (22)

= q + q2 + q3 + ...+ qn+1 (23)

Hence :

S − q × S = (1 + q + q2 + ...+ qn)− (q + q2 + q3 + ...+ qn+1) (24)

S − q × S = 1 + q − q + q2 − q2 + ...+ qn − qn + qn+1 (25)

S − q × S = 1 + qn+1 (26)

S × (1− q) = 1 + qn+1 (27)

S =
1− qn+1

1− q
(28)

And for q = 1,
S = 1 + q + q2 + ...+ qn︸ ︷︷ ︸

n

= 1 + 1 + 1 + ...+ 1︸ ︷︷ ︸
n+1

= n+ 1

�

2.2 Square sums

Theorem 2.3: Sum of the �rst n squares

∀n ∈ N :

12 + 22 + 32 + ...+ n2 =

n∑
k=0

k2 =
n(n+ 1)(2n+ 1)

6

Proof 2.3

Let : S1 = 1 + 2 + 3 + ...+ n, S2 = 12 + 22 + 32 + ...+ n2 and S3 = 13 + 23 + 33 + ...+ n3. ∀n ∈ N :

(n+ 1)3 = (n+ 1)(n+ 1)2 = (n+ 1)(n2 + 2n+ 1) = n3 + 3n2 + 3n+ 1

(0 + 1)3 = 03 + 3× 02 + 3× 0 + 1 (29)

(1 + 1)3 = 13 + 3× 12 + 3× 1 + 1 (30)

(2 + 1)3 = 23 + 3× 22 + 3× 2 + 1 (31)

... = ... (32)

(n− 2 + 1)3 = (n− 2)3 + 3× (n− 2)2 + 3× (n− 2) + 1 (33)

(n− 1 + 1)3 = (n− 1)3 + 3× (n− 1)2 + 3× (n− 1) + 1 (34)

(n+ 1)3 = n3 + 3× n2 + 3× n+ 1 (35)

(36)
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By adding member to member the two ties, we obtain :

S3 + (n+ 1)3 = S3 + 3S2 + 3S1 + (n+ 1) (37)

(n+ 1)3 = 3S2 + 3S1 + (n+ 1) (38)

n3 + 3n2 + 3n+ 1 = 3S2 + 3
n(n+ 1)

2
+ (n+ 1) (39)

2n3 + 6n2 + 6n+ 2 = 6S2 + 3n(n+ 1) + 2(n+ 1) (40)

2n3 + 6n2 + 6n+ 2− 3n2 − 3n− 2n− 2 = 6S2 (41)

6S2 = 2n3 + 3n2 + n (42)

6S2 = n(2n2 + 3n+ 1) (43)

6S2 = n(n+ 1)(2n+ 1) (44)

S2 =
n(n+ 1)(2n+ 1)

6
(45)

�

Proof 2.4: By Mathematical induction

Let's show by recurrence on n ∈ N that

Pn : ”

n∑
k=0

k2 =
n(n+ 1)(2n+ 1)

6
”

Initialization: n = 0
0∑

k=0

k2 =
0× 1× 1

6
=

0

6
= 0

Let n ∈ N such as Pn

n+1∑
k=0

k2 =

n∑
k=0

k2 + (n+ 1)2 (46)

=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 (by the recurrence hypothesis) (47)

=
n(n+ 1)(2n+ 1) + 6(n+ 1)2

6
(48)

=
n(2n2 + n+ 2n+ 1) + 6n2 + 12n+ 6

6
(49)

=
2n3 + n2 + 2n2 + n+ 6n2 + 12n+ 6

6
(50)

=
2n3 + 9n2 + 13n+ 6

6
(51)

=
(n+ 1)(n+ 2)(2n+ 3)

6
(52)

Hence Pn+1

So we have ∀n ∈ N:
n∑

k=0

k2 =
n(n+ 1)(2n+ 1)

6

�
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2.3 Cube

Theorem 3.4: Sum of the �rst n cubes

∀n ∈ N :

13 + 23 + 33 + ...+ n3 =

n∑
k=0

k3 =

(
n(n+ 1)

2

)2

Proof 3.5

et S1 = 1+2+3+ ...+n, S2 = 12+22+32+ ...+n2, S3 = 13+23+33+ ...+n3 and S4 = 14+24+34+ ...+n4.
∀n ∈ N :

(n+ 1)4 = (n+ 1)2(n+ 1)2 = (n2 + 2n+ 1)(n2 + 2n+ 1) = n4 + 4n3 + 6n2 + 4n+ 1

(0 + 1)4 = 04 + 4× 03 + 6× 02 + 4× 0 + 1 (53)

(1 + 1)4 = 14 + 4× 13 + 6× 12 + 4× 1 + 1 (54)

(2 + 1)4 = 24 + 4× 23 + 6× 22 + 4× 2 + 1 (55)

... = ... (56)

(n− 2 + 1)4 = (n− 2)4 + 4(n− 2)3 + 6(n− 2)2 + 4(n− 2) + 1 (57)

(n− 1 + 1)4 = (n− 1)4 + 4(n− 1)3 + 6(n− 1)2 + 4(n− 1) + 1 (58)

(n+ 1)4 = n4 + 4n3 + 6n2 + 4n+ 1 (59)

(60)

By adding member to member the two ties, we obtain :

S4 + (n+ 1)4 = S4 + 4S3 + 6S2 + 4S1 + (n+ 1) (61)

(n+ 1)4 = 4S3 + 6S2 + 4S1 + (n+ 1) (62)

(n+ 1)4 = 4S3 + n(n+ 1)(2n+ 1) + 4
n(n+ 1)

2
+ (n+ 1) (63)

(n+ 1)4 − n(n+ 1)(2n+ 1)− 2n(n+ 1)− (n+ 1) = 4S3 (64)

(n+ 1)((n+ 1)3 − n(2n+ 1)− 2n− 1) = 4S3 (65)

4S3 = (n+ 1)(n3 + n2) (66)

4S3 = (n+ 1)n2(n+ 1)2 (67)

S3 =
n2(n+ 1)2

4
(68)

S3 =

(
n(n+ 1)2

2

)2

= S2
1 (69)

�
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Proof 3.6: By Mathematical induction

Let's show by recurrence on n ∈ N that

Pn : ”

n∑
k=0

k3 =

(
n(n+ 1)

2

)2

”

Initialization: n = 0
0∑

k=0

k3 =

(
0× 1

2

)2

= 0

Let n ∈ N such as Pn

n+1∑
k=0

k3 =

n∑
k=0

k3 + (n+ 1)3 (70)

=

(
n(n+ 1)

2

)2

+ (n+ 1)3 (by the recurrence hypothesis) (71)

=
n2(n2 + 2n+ 1)

4
+ (n+ 1)3 (72)

=
n4 + 2n3 + n2 + 4(n3 + 2n2 + n+ n2 + 2n+ 1)

4
(73)

=
n4 + 2n3 + n2 + 4n3 + 8n2 + 4n+ 4n2 + 8n+ 4

4
(74)

=
n4 + 6n3 + 13n2 + 12n+ 4

4
(75)

=

(
(n+ 1)(n+ 2)

2

)2

(76)

Hence Pn+1

So we have ∀n ∈ N:
n∑

k=0

k3 =

(
n(n+ 1)

2

)2

�
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