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Abstract

We will prove the explicit forms of the geometrical and arithmetical sequences and prove the formulas of the
sums n first squares and cubes.



1 Geometric and arithmetic sequences

1.1 Arithmetic
Definition 1.1

RN designates the function space : N — R. They will be called real (values) sequences.
Definition 1.2

Let (tn)nen € RY. (uy)nen is an arithmetic sequence if and only if

IreRVneNuy1 =uy, +r
Definition 1.3

RY refers to the set of arithmetic sequences.

RS = {(UH)HEN € RN‘HT € Ravn S N,Un+1 = Un +7'}

Theorem 1.1: Explicit form of arithmetic sequences

(Un)nen € RE‘ & IreR,Vne N u, =ug+nr

Proof 1.1

Proposition 1.1.1. The sequence (u,,) is an arithmetic sequence of first term «0 and reason r.

Proof. Let (upn)nen|tn = uo + nr
We have : upt1 —up =uo+(n+1)r—(ug+nr)=up+nr+r—u—nr=r

The sequence (uy) is thus an arithmetic sequence of first term vy and reason r.
Proposition 1.1.2. The sequence (u,) can be described as u, = ug + nr.
Proof. Let (uy) an arithmetic sequence of reason r and first term wuq.

Uy =Ug + 71
U = U1 +7r
Up—1 =Up—2+7T

Up = Up—1 + 7T
By adding member to member all these equalities, we obtain :

Uy +us + ... +FUp—1 + Uy =UgF UL F ... FUp—1 + N7
Up =UY+ UL — UL+ U2 — U2+ oo +Up—1] — Up—1 +NT

Uy = Ug + N7



Proof Theorem. We can see that Proposition 1.1.1. = Proposition 1.1.2. and Proposition 1.1.2. = Proposi-
tion 1.1.1.. It means that Proposition 1.1.1. < Proposition 1.1.2..

This proves that only the writing u,, = up + nr is an arithmetic sequence of reason r and first term wy. |

1.2 Geo
Definition 2.4

RN designates the function space : N — R. They will be called real (values) sequences.

Definition 2.5

Let (un)nen € RY. (uy,)nen is an geometric sequence if and only if
Jg e R,Vn € Njupt1 = up X gq

Definition 2.6

R§ refers to the set of geometric sequences.

R§ = {(tn)nen € RNEIq eR,Vn € N upq1 = up X g}

Theorem 2.2: Explicit form of geometric sequences

(Un)nen € RE’ & dgeR,Vn e Nyu,, =ug X ¢"
Proof 2.2

Proposition 1.2.1. The sequence (u,,) is an geometric sequence of first term «0 and reason q.
Proof. Let (tn)nen|tn = uo X ¢"

+1 n
Uptr1l  Ug X q" ug X X
We have : —+1 — q = q q_ [ |

U ug X q" up X q"

Proposition 1.2.2. The sequence (u,,) can be described as w,, = ug X ¢".

Proof. Let (u,) a geometric sequence of reason ¢ and first term .

U1 = upq 9

Uz = u19q

Up—1 = Un—-24

Up = Up—-14



By multiplying member to member all these equalities, we obtain :

UL X Uy X e X Up_1 X Uy = Uy X UL X oo X Up_1 X ¢ (14)
Up X ooo X Up—1

Up = Uy X ———————"— x ¢" (15)
Up X oo X Up—1

Uy = Upq" (16)

Proof Theorem. We can see that Proposition 1.2.1. = Proposition 1.2.2. and Proposition 1.2.2. = Proposi-
tion 1.2.1.. It means that Proposition 1.2.1. < Proposition 1.2.2..

This proves that only the writing u,, = ug x ¢" is a geometric sequence of reason ¢ and first term wug.



2 Some sums

2.1 Early sums

Theorem 1.1
Vn € N* : .
14+2+3+..4+n= %
1
Z k- L)
Proof 1.1
Vn € N* :
et: S= 1 + 2 + . + n-2 4+ n-1 4+ n (17)
We have also: S= n + =n-1 4+ .. 4+ 3 + 2 + 1 (18)

By adding member to member the two ties, we obtain :

2S =+ +n+D)+n+D)+...+(n+1)+(n+1)+(n+1) (19)
25 =n(n+1) o (20)
]

Remark. This demonstration was discovered by Gauss when, as a child, his mistress asked him to sum the numbers
from 1 to 100.

Theorem 1.2

Let ¢ be any real number and n a natural number :

o If ¢ # 1 then

_qn+1
l+q+¢+.. +¢" =——
1—-gq
or
1_qn+1
St =t
o If ¢ =1 then
l4g+¢@+..+¢"=n+1
or

zn:qk:n—&—l
k=0



Proof 1.2

If g# 1 thenlet S=1+¢q+¢*+...+q" So we have

qu:qx(1+q+q2—|—...—|—q")
=q+¢+ ¢+

Hence :
S—gxS=014+q+¢+..+¢") -+ +¢+ .. +¢"")
S—qxS=1+q—q+¢ - +..+¢" —¢"+¢""'
S—qgx8=1+q¢""
Sx(1—q)=1+q¢"""
17 n+1
g—_-_1
1—gq
And for ¢ =1,

S=14qg+¢@+. . +¢"=1+1+14.. +1=n+1
n n+1

2.2 Square sums

Theorem 2.3: Sum of the first n squares

Vn e N:

12+22+32+...+n2:Zk2:
k=0

Proof 2.3

Let: S1=14+24+34+...4n,5=124+22+32+.. . +n%and S5=13+234+33+ ... +n3 VneN:

n+1)P=m+Dn+1)2 =mn+Dn*+2n+1)=n*+3n*+3n+1

(041 =0"+3x0*+3x0+1
1+1P2=13+3x124+3x1+1
(2+1)=2"+3x22+3x2+1
(n—24+13=mn-2°+3xn—-22?+3x(n-2)+1
n—14+1)P°=mn-1P+3xn-1)>+3x(n—-1)+1
(n+1)2=n*+3xn*+3xn+1



By adding member to member the two ties, we obtain :

Sz + (n+1)° =53 +3% +35 + (n+1)
(n+1)> =35 +3S + (n+1)

1
n3+3n2+3n+1=352+3%

2n® 4+ 6n +6n+2 =65 +3n(n+1)+2(n+1)
2n° +6n” 4+ 6n+ 2 — 3n” — 3n — 2n — 2 = 65,
652 =2n% +3n%+n
65y = n(2n? +3n + 1)
65 =n(n+1)2n+1)

n(n+1)2n+1)
6

+(n+1)

Sy =

Proof 2.4: By Mathematical induction

Let’s show by recurrence on n € N that

Initialization: n =0

Pt 6 6
Let n € N such as P,
n+1 n
S-S
k=0 k=0
1)(2 1
_nlnt )6( ntl) +(n+1)*>  (by the recurrence hypothesis)
~ n(n+1)(2n+1) 4 6(n +1)?
B 6
_n@2n® +n+2n+1) 460>+ 12n 46
B 6
_ 2n3 +n? +2n? + n+6n% +12n +6
B 6
_ 2n3 4+ 9n? +13n + 6
B 6
_ (n+1)(n+2)(2n + 3)
B 6

Hence P,
So we have Vn € N:

", nm+1)(@2n+1)
k2 =
2 ;



2.3 Cube

Theorem 3.4: Sum of the first n cubes
Vn e N:

n +1) 2
13193133 3 _ 13— n(n
+22 43+ . +n kZ:O 5

Proof 3.5

et S =14+243+...4n, So =1242243%+...+n?, S5 =134+22 433+ . +ndand Sy = 14 +2*+3%+ ...

Vn eN:

n+D*=m+1)*n+1)2=02+2n+1)(n*> +2n+1) =n* + 40 + 60> +4n + 1

O+1)*=0"+4x0>+6x0>+4x0+1
A+ =1"+4x134+6x12+4x1+1
2+ =21 +4x22 +6x22+4x2+1
-2+ =m-2"+4n—-2>+6(n—22+4(n—2)+1
-1+ =m-1)*4+4n-1°+6(n—-1)2+4(n—-1)+1
(n+1D*=n*+4n3 +6n +4n +1

By adding member to member the two ties, we obtain :

4 =8, +4S3+6S8,+4S8 + (n+1)
4 =483+ 65+ 4S5 + (n+1)

S4+(’I’L—|— 1)
(n+1)
(n+1)* =483 + n(n+1)(2n + 1) +4w

n+D*=nn+1)2n+1) —2n(n+1) — (n+1) = 453
(n+1)((n+1)%—n@2n+1)—2n—1) = 453
483 = (n +1)(n® +n?)
483 = (n+ 1)n*(n +1)?

n%(n+1)2
5, = kD
nin+1)2\2
53=<( 5 )) =57

+(n+1)



Proof 3.6: By Mathematical induction

Let’s show by recurrence on n € N that

Initialization: n =0

n 2
2 nn+1 ”
P, Zk3:<( B) ))
k=0

Let n € N such as P,

Hence P, 1
So we have Vn € N:

n+1

> K :ik3+(n+1)3
k=0 k=0

(e

2
5 ) +(n+1)> (by the recurrence hypothesis)

n?(n®+2n+1
RS TES T
nt*+2n3 +n2+4m3+2n2 +n+n?+2n+1)
4
nt4+2nd 4+ n2+4nd +8n2 +4n+4n? +8n+4
4
nt +6n% 4+ 13n2 + 12n 4+ 4
4
<<n+1><"+2>>2
B 2




